Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Phys ; 47(4): 374-380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36908490

RESUMO

Purpose: The aim of this study is to investigate the factors affecting the response of the pixelated CZT SPECT imaging systems and to compare the performance of these systems with the conventional SPECT imaging systems. Materials and Methods: By using the simulation technique, the effect of applied voltage, gap size between the anode pixels, and electron cloud mobility on the response of a pixelated CZT SPECT system are investigated. Then, the response of this system is compared with the conventional SPECT system in both single- and dual-radioisotope imaging. Results: The results of this study show that increasing the applied voltage, electron cloud mobility or decreasing the gap size, in the optimal range of these parameters obtained in this study, leads to reducing the lateral charge diffusion and consequently improving the probability of the complete charge collection by the target anode pixel. In dual-radioisotope imaging by the pixelated CZT SPECT system, although higher energy resolution results in better separation of photopeaks, the presence of a low-energy tail leads to an overestimation of counts in the low-energy photopeak. Conclusion: The use of the optimal values for the applied voltage, gap size, and electron cloud mobility strongly affect the performance of the pixelated CZT SPECT systems. In addition, the presence of a tail restricts the use of these systems for dual-radioisotope imaging and also, the use of the conventional methods for scatter correction.

2.
J Med Phys ; 47(3): 294-300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684699

RESUMO

Introduction: The quality of images obtained from the nuclear medicine imaging systems depends on different factors. One of the most important of these factors is the geometrical and physical characteristics of collimator used for imaging with a given radioisotope. Aims and Objectives: The aim of this study is to investigate the contribution of different components of collimator response for determining the most suitable parallel-hole collimator for the different radioisotope energies used in nuclear medicine imaging. Materials and Methods: In this study, the SIMIND Monte Carlo simulation program is used to determine the contribution of geometrical, penetrating and scattered response components of four hexagonal parallel-hole collimators including low-energy high-resolution (LEHR), low-energy general-purpose (LEGP), medium-energy general-purpose (MEGP), and high-energy general-purpose (HEGP) collimators, for 12 different energies used in nuclear medicine imaging. Results: According to the simulation results, the use of both the LEHR and LEGP collimators leads to a geometrical component above 60% for energies between 69 and 171 keV. On the other hand, for energies between 185 and 245 keV, the MEGP collimator and for energy of 364 keV, the HEGP collimator gives the geometrical components above 70% and 60%, respectively, while for energy of 511 keV, the geometrical response of all four collimators is below 20%. Conclusion: The results of this study show that for two low-energy single-photopeak radioisotopes, Tc-99m and I-123, the LEHR and LEGP collimators, and for high-energy single-photopeak radioisotope, I-131, the HEGP collimator are most suitable collimators. For dual-photopeak In-111 radioisotope and triple-photopeak Ga-67 radioisotope, the MEGP and HEGP collimators and for triple-photopeak Tl-201 radioisotopes, the LEHR and LEGP collimators are proposed as most suitable collimators.

3.
J Med Phys ; 45(2): 107-115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32831493

RESUMO

INTRODUCTION: Detection of compton scattered photons is one of the most important factors affecting the quality of single-photon emission computed tomography (SPECT) images. In most cases, the multiple-energy window acquisition methods are used for estimation of the scatter contribution into the main energy window(s) used in imaging. AIMS AND OBJECTIVES: The purpose of this study is to evaluate and compare the performance of four different scatter correction methods in In-111 SPECT imaging. Due to the lack of sufficient studies in this field, it can be useful to perform a more detailed and comparative study. MATERIALS AND METHODS: Four approximations for scatter correction of In-111 SPECT images are evaluated by using the Monte Carlo simulation. These methods are firstly applied on each of photopeak windows, separately. Then, the effect of the correction methods is investigated by considering both the photopeak windows. The images obtained from a simulated multiple-spheres phantom are used for the evaluation of the correction methods by using three assessment criteria, including the image contrast, relative noise, and the recovery coefficient. RESULTS: The results of this study show that the correction methods, when using the single photopeak windows, result in increase in image contrast with a significant level of noise. In return, when both the photopeak energy windows are used for imaging, it is possible to achieve the better image characteristics. CONCLUSION: The use of the proposed correction methods, by considering both the photopeak windows, leads to improve the image contrast with a reasonable level of image noise.

4.
J Med Phys ; 45(1): 44-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32355434

RESUMO

BACKGROUND: Monte Carlo (MC) simulation codes are used extensively for modeling the nuclear medicine imaging systems, such as single photon emission computed tomography (SPECT) and positron emission tomography (PET). By using these codes, it is possible to set different imaging parameters and do various studies in the field of nuclear medicine imaging. AIMS AND OBJECTIVES: The aim of this study is to investigate the effective factors in improvement of the SPECT image quality by using MC simulation. MATERIALS AND METHODS: In this study, we used the SIMIND MC simulation code and Jaszczak phantom containing six spheres with different diameters placed into a water-filled cylindrical phantom for consideration of the effects of different factors on quality of the images obtained from Tc-99m SPECT imaging system. The assessment criteria used to investigate these factors included image contrast, signal-to-noise ratio (SNR) and relative noise of the background (RNB). RESULTS: The results of this study show that the right choice of the arc of rotation, the image matrix size, the number of angular views, type of the collimators, and also filters used in the image reconstruction affect the quality of SPECT images. Also, we show that use of scatter correction methods can improve the image quality. CONCLUSION: The MC simulation is a suitable tool for investigation of different factors affecting the quality of SPECT images, essentially in the studies based on the energy spectrum, such as the evaluation of the scatter correction methods.

5.
J Cancer Res Ther ; 13(6): 936-942, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29237954

RESUMO

BACKGROUND: Compton-scattered photons transfer incorrect spatial information. These photons are detected in used photo-peak energy window. In this study, three scatter correction procedures including dual-energy window (DEW), three energy window (TEW), and new approach were evaluated, and then the best procedure based on simulation and clinical conditions introduced. MATERIALS AND METHODS: In this study, simulation projections and three-dimensional nonuniform rational B-spline-based Cardiac-Torso phantoms were produced by GEANT4 application for emission tomography simulation code. For clinical study, 2-day stress/rest myocardial perfusion imaging (MPI) protocol was performed with 99m Tc-sestamibi for 46 patients. Image quality parameters including contrast, signal-to-noise ratio (SNR), and relative noise of the background (RNB) were evaluated. RESULTS: The simulation results showed that contrast values for DEW, TEW, and new approach were (0.45 ± 0.07, 0.5 ± 0.08, and 0.63 ± 0.09), SNR values (4.74 ± 0.94, 5.58 ± 1.08, and 6.56 ± 1.24), and RNB values (0.33 ± 0.06, 0.33 ± 0.07, and 0.33 ± 0.05), respectively. In clinical study, the contrast values for DEW, TEW, and new approach were 0.53 ± 0.03, 0.57 ± 0.07, and 0.62 ± 0.04 in rest MPI and were 0.52 ± 0.04, 0.57 ± 0.06, and 0.6 ± 0.05 in stress MPI, respectively. Moreover, for the rest images, the SNR values were 7.65 ± 1.9, 9.08 ± 2.2, and 10.2 ± 1.75 and for stress images were 7.76 ± 1.99, 9.12 ± 2.25, and 10.17 ± 2.04, respectively. Finally, RNB values for rest and stress images were 0.12 ± 0.03, 0.13 ± 0.03, and 0.13 ± 0.03, respectively. CONCLUSION: The simulation and the clinical studies showed that the new approach could be better performance than DEW, TEW methods, according to values of the contrast, and the SNR for scatter correction.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Coração/fisiopatologia , Humanos , Imagem de Perfusão do Miocárdio , Imagens de Fantasmas , Razão Sinal-Ruído , Tecnécio Tc 99m Mertiatida/uso terapêutico , Tomografia Computadorizada por Raios X
6.
Phys Med ; 30(8): 947-53, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24985135

RESUMO

Three practical methods for scatter correction of Tc-99m SPECT images are evaluated. Among these, two methods, three-energy window (TEW) methods using the trapezoidal and triangular approximations, have been described previously by investigators, and a new approximation is offered in this work. The SIMIND (SIMulation of Imaging Nuclear Detectors) Monte Carlo program is used to simulate a line source placed at on-axis and 5 cm off-axis locations, a cold-sphere/hot-background phantom, a hot-sphere/cold-background phantom, and a more clinically realistic NCAT (Nonuniform Rational B-spline-based CArdiac-Torso) phantom. For evaluation of these methods, the scatter line-spread functions and scatter fractions for the on- and off-axis line source, image contrast, signal-to-noise ratio and relative noise for the cold spheres, and recovery coefficient for the hot spheres of different diameters are compared. For the NCAT phantom, a line profile through a slice of the reconstructed image is considered before and after scatter correction, and also image contrast defined by this profile is used to compare the correction methods. The results of this study indicate that for the line source simulation the scatter fractions obtained from the proposed method are a better estimation of true scatter fractions. Also, for both the sphere simulation and NCAT simulation, the proposed method improves the image contrast as compared to the two other methods.


Assuntos
Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Luz , Método de Monte Carlo , Imagens de Fantasmas , Reprodutibilidade dos Testes , Espalhamento de Radiação , Razão Sinal-Ruído , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...